Human Upf Proteins in NMD

نویسندگان

  • Guramrit Singh
  • Jens Lykke-Andersen
چکیده

The human Upf (hUpf) proteins work at the core of the nonsense-mediated mRNA decay (NMD) pathway. The three hUpf proteins, hUpf1, hUpf2 and hUpf3, form the hUpf complex, which is critical for the recognition and degradation of mRNAs containing premature termination codons (PTCs). The recognition of PTC-containing mRNAs by the hUpf complex in mammalian cells is promoted by the splicing dependent exon-junction complex (EJC), with which hUpf3 interacts. Following the recognition of PTCs, the hUpf complex is believed to disrupt mRNP structure to prevent further translation and trigger mRNA decay. Emerging evidence suggests that hSmg proteins involved in phosphorylation and dephosphorylation of hUpf1 may play a key role in delivering PTC-containing mRNAs to the mRNA decay machinery.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Yeast Upf proteins required for RNA surveillance affect global expression of the yeast transcriptome.

mRNAs are monitored for errors in gene expression by RNA surveillance, in which mRNAs that cannot be fully translated are degraded by the nonsense-mediated mRNA decay pathway (NMD). RNA surveillance ensures that potentially deleterious truncated proteins are seldom made. NMD pathways that promote surveillance have been found in a wide range of eukaryotes. In Saccharomyces cerevisiae, the protei...

متن کامل

A Competition between Stimulators and Antagonists of Upf Complex Recruitment Governs Human Nonsense-Mediated mRNA Decay

The nonsense-mediated decay (NMD) pathway subjects mRNAs with premature termination codons (PTCs) to rapid decay. The conserved Upf1-3 complex interacts with the eukaryotic translation release factors, eRF3 and eRF1, and triggers NMD when translation termination takes place at a PTC. Contrasting models postulate central roles in PTC-recognition for the exon junction complex in mammals versus th...

متن کامل

mRNAs encoding telomerase components and regulators are controlled by UPF genes in Saccharomyces cerevisiae.

Telomeres, the chromosome ends, are maintained by a balance of activities that erode and replace the terminal DNA sequences. Furthermore, telomere-proximal genes are often silenced in an epigenetic manner. In Saccharomyces cerevisiae, average telomere length and telomeric silencing are reduced by loss of function of UPF genes required in the nonsense-mediated mRNA decay (NMD) pathway. Because N...

متن کامل

Possible Role of MADS AFFECTING FLOWERING 3 and B-BOX DOMAIN PROTEIN 19 in Flowering Time Regulation of Arabidopsis Mutants with Defects in Nonsense-Mediated mRNA Decay

Eukaryotic cells use nonsense-mediated mRNA decay (NMD) to clear aberrant mRNAs from the cell, thus preventing the accumulation of truncated proteins. In Arabidopsis, two UP-Frameshift (UPF) proteins, UPF1 and UPF3, play a critical role in NMD. Although deficiency of UPF1 and UPF3 leads to various developmental defects, little is known about the mechanism underlying the regulation of flowering ...

متن کامل

Communication with the exon-junction complex and activation of nonsense-mediated decay by human Upf proteins occur in the cytoplasm.

The nonsense-mediated mRNA decay (NMD) pathway rids eukaryotic cells of mRNAs with premature termination codons. There is contradictory evidence as to whether mammalian NMD is a nuclear or a cytoplasmic process. Here, we show evidence that NMD in human cells occurs primarily, if not entirely, in the cytoplasm. Polypeptides designed to inhibit interactions between NMD factors specifically impede...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005